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Introduction 

§  Food recognition: the ability of a 
computer to identify different types 
of food in images 

§  Imagine a food processing plant that 
detects defective products 

§  What if you could track nutrition 
information by taking a picture of 
your meal? 

 

 

§  Lukas Bossard et. al.2 introduced 
Food-101 dataset (Fig. 1) for food 
recognition, achieved 56.4% acc. 
using convolutional neural network 

§  Goal: compare techniques for food 
recognition and improve on the 
accuracy reported by Bossard et. al. 

Figure 1: Images of french onion soup (left) 
and macaroni and cheese (right) from the 
Food-101 dataset, which has 101 classes total 

Methodology 

§  Four classifiers were implemented 
and used to classify Food-101, and 
their resulting accuracies compared 

1.  Bag of Words1 (BoW) 

2.  Improved Fisher Vector1 (IFV) 

3.  Convolutional Neural Network3 (CNN) 

4.  Fine-tuned Very Deep CNN4 (DCNN) 

§  Food-101 set was used as is for 
consistency with Bossard et. al.; 
some incorrect labels exist (Fig. 2) 

 

 
 

§  Compared with two Bossard 
models: a CNN at 54.6% and a 
random forest (RF) model at 50.8% 

Figure 2: An applicable classifier must be able 
to deal with incorrect labels on training images 
such as this one, which is labeled as hummus 

Average Accuracies 

Class-by-Class Accuracies 

So what’s the beef? 
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Table 2: Accuracy by class for BoW and IFV 

Figure 4: Confusion matrices 
for BoW (top) and IFV (bottom) 

§  IFV outperforms BoW for all 101 classes of Food-101 (Table 2) 

§  Even so, accuracies vary from 13.2% to 83.2% 

§  Further development needed to calculate for CNN, DCNN 

Figure 3: Accuracy for the DCNN over 
250,000 training iterations (left), ultimately 
resulting in 78.6% accuracy. Accuracy for our 
CNN is shown for comparison (right), 
reaching 54.8% accuracy 

Table 1: Average accuracy 
for each of the four 
implemented classifiers as 
those reported by Bossard  

§  Accuracy for our CNN 
fell just short of the 
accuracy reported by 
Bossard et. al. (Table 1) 

§  Some variance expected 
due to random 
initialization of weights 

§  Fine-tuned DCNN 
outperforms Bossard et. 
al. CNN by a margin of 
over 20% (Fig. 3) 

§  While the DCNN classifier improves on 
current accuracies, it has tremendously 
many parameters: ~144 million (Fig. 5) 

o  Therefore must be pre-trained on a 
larger dataset (Imagenet 2012) 

§  Larger dataset of food may produce 
features more useful for fine-tuning on 
Food-101 

§  Large memory needs of DCNN training 
also mandates small batch size on 
machines without sufficient GPU memory 

o  This can create problems with 
instability in optimization of loss 
function (Fig. 6) 

§  Food-specific pre-training data and access 
to more memory could result in 
application-quality accuracy for food 
recognition 

Figure 6: The training loss should be minimized as 
the training progresses, but small batch sizes make 
the descent quite noisy (4, left) compared to larger 
batches (64, right) 

Figure 5: The DCNN uses 19 weight layers, 
resulting in a very memory-needy network relative 
to a more conventional 10-layer CNN 
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Model Acc. 
This BoW 27.6% 

work IFV 42.2% 
CNN 54.8% 

DCNN 78.6% 
Bossard CNN 56.4% 

et. al. RF 50.8% 

Testing accuracy vs. Training iterations 
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